
 
 
 
 
 
 
 
 
 
 
 

Quantitative Research on Friction Ridge Patterns 

Analysis of Level 3 Features at High Resolutions 
 
 

User’s Guide to L3TK 
Level 3 Fingerprint Image Toolkit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

March 2008 

International Biometric Group 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 2 of 25 

Revision History 
 

 
Version Date Section Changes 

1.0 31 March 2008 N/A N/A 
 
 
 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 3 of 25 

Abstract 
 

 
This document contains operation instructions for the applications provided as part of Quantitative 
Research on Friction Ridge Patterns: Phase II Analysis of Level 3 Characteristics at High Resolutions for 
the National Institute of Justice. The applications and the associated SDK are collectively known as L3TK. 
L3TK is designed to perform feature extraction, matching, and quality analysis on high resolution 
fingerprint images. For information on the SDK portion of L3TK, see the API documentation. 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 4 of 25 

Table of Contents 
  
1 Overview............................................................................................................................................... 5 
2 Installation ............................................................................................................................................ 6 

Platform Requirements.............................................................................................................................. 6 
External Software Requirements............................................................................................................... 6 

3 Feature Extractor.................................................................................................................................. 7 
Application Processing .............................................................................................................................. 7 
Execution Syntax....................................................................................................................................... 7 
Configuration Parameters.......................................................................................................................... 8 
Supported Image Formats......................................................................................................................... 8 
Supported Image Resolutions ................................................................................................................... 8 
Processing Dependencies......................................................................................................................... 8 

4 Performance Evaluator....................................................................................................................... 10 
Application Processing ............................................................................................................................ 10 
Execution Syntax..................................................................................................................................... 13 
Known Bugs ............................................................................................................................................ 14 

5 IQM Analyzer...................................................................................................................................... 15 
Application Processing ............................................................................................................................ 15 
Execution Syntax..................................................................................................................................... 15 
Notes about IQM Preferences................................................................................................................. 16 

Appendix A: Feature Extraction Configuration............................................................................................ 17 
Appendix B: Software Libraries................................................................................................................... 21 

IBG MIG Libraries.................................................................................................................................... 21 
JAMA ....................................................................................................................................................... 22 
JLAPACK................................................................................................................................................. 22 
Apache Commons Logging ..................................................................................................................... 23 
NIST Biometric Image Software .............................................................................................................. 23 
Structures ................................................................................................................................................ 24 

Appendix C: Standardized Command Line Syntax..................................................................................... 25 
 
 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 5 of 25 

1 Overview 
 

 
L3TK consists of the collection of applications and the associated software development kit developed for 
Phase II Analysis of Level 3 Feature at High Resolutions for the National Institute of Justice. The software 
for extraction of Level 3 fingerprint features can function as a standalone application, but for extraction of 
Level 2 features and for matching of any feature classes, the NIST Biometric Image Software (NBIS) suite 
is required.  
 
This guide contains instructions for execution of the L3TK command line applications. The L3TK 
command line applications include tools for feature extraction, bulk matching performance evaluation, and 
image quality analysis. For information on the SDK, see the API documentation for the SDK. For 
information on the algorithms and techniques used for extraction and matching, see the research report. 
 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 6 of 25 

2 Installation 
 

 
L3TK is packaged as a ZIP archive named nij-l3tk- X.Y where X.Y is the version. Unzip this archive 
into an empty directory, hereafter referred to as install_dir . 
 
The files and directories listed in Table 1 should be present in the installation directory. 
 
Directory Files Description 
install_dir nij-extractor.jar 

nij-evaluator.jar 
iqm-analyzer.jar 

L3TK application binaries  

install_dir/src nij-l3tk- X.Y-src.jar Source code files for L3TK SDK 
install_dir/lib ibg-mig.jar 

commons-logging.jar 
bailey.jar 
Jama-1.0.2.jar 
mindtct.exe 
cygwin1.dll 
blas.jar 
blas_simple.jar 
f2jutil.jar 
lapack.jar 
lapack_simple.jar 
xerbla.jar  

Required software libraries and 
NBIS MINDTCT Windows binary 
executable. 
 
Libraries in blue are required only by 
certain parts of the SDK and are not 
required by the application 
executables. 

install_dir/doc NIJ-QRFRP L3TK User’s Guide.pdf This user’s guide 
install_dir/doc/api nij-l3tk- X.Y-doc.zip API documentation for L3TK SDK 
install_dir/doc/lic gnu-gpl2.txt 

apache-LICENSE-2.0.txt 
f2j-license 

Licenses for open source software 
distributed with L3TK 

Table 1: L3TK files and directories 
 
If all the above files and directories are present, the software is ready for use. For operation in non-
Windows environments, the NBIS source must be compiled and the mindtct  executable placed in the 
installation directory install_dir . 

Platform Requirements 
The L3TK applications and SDK are written in Java™ and require JRE 1.6+. Although the applications 
and SDK have been developed in a platform independent interpreted language, some extraction and all 
matching requires the NIST Biometric Image Software (NBIS) suite. The NBIS source is written in ANSI C 
and has been designed and tested to work with GNU/Linux and the Mac OS X operating system. NBIS 
may also be compiled to run on Windows machines by first installing the Cygwin library and associated 
tools. See the User’s Guide to NBIS for more information.  

External Software Requirements 
The NBIS mindtct  application is required for some extraction processes. The mindtct  application is 
available in the non-export controlled portion of NBIS, and a precompiled Windows binary executable has 
been included with the L3TK distribution, along with the required cygwin1.dll  library.  
 
The NBIS bozorth3  application is required for matching as evaluated in the Quantitative Research on 
Friction Ridge Patterns report. The bozorth3  application is part of the export-controlled portion of NBIS, 
which must be requested from NIST and delivered on CD via post. Visit the NIST web site, nist.gov, for 
more information and to obtain a copy of the export-controlled software.  



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 7 of 25 

3 Feature Extractor 
 

 
The feature extractor may be used to extract pores, minutia-constrained ridge contour points, 
edgeoscopic features, and/or minutiae from a fingerprint image.  Each feature type is then saved to an 
output directory in a format compatible with the Bozorth3 matcher.  The process flow is as follows:  
 

1. The image is opened and preprocessed.   
2. Desired features are extracted based upon the specified flags.   
3. Extracted features are written to template files.   
4. Extracted quality data is written to quality files.     
5. Diagnostic images are written as specified by the configuration file.   

 
If a directory of images is specified in the command-line, steps 1-5 are repeated for each image.   
 
Performance Evaluator application 
Executable nij-extractor.jar 
Dependencies ibg-mig.jar 
External Dependencies mindtct  exectuable 
Table 2: Feature Extractor - key application information 

Application Processing  
For a detailed explanation of the feature extraction process, see the Feature Extraction section in the 
research report on.  

Execution Syntax 
The command syntax is as follows: 
 

java –jar nij-extractor.jar pathname1 dpi pathname2 [ pathname3] [OPTIONS] 

 
where: 
 

• pathname1 is the path to a fingerprint image or directory of fingerprint images 
• dpi is the resolution in DPI of the fingerprint image(s) 
• pathname2 is the path to write all of the templates, diagnostic images and quality files 
• pathname3 is the path to the config file (optional) 
 

and [OPTIONS]  are any options listed in Table 3. By default, if no options are specified, the input image is 
simply preprocessed.  More than one extraction option can be used to extract multiple feature types from 
an image (e.g. –p and –m can be used together to create a pore template and a minutia template per 
image).  A space must exist between any flags used.   
 
The command 
 

java –jar nij-extractor.jar ./samples/ 2000 /output / ./extractor.conf -a 
 
entered on a single line would perform the following: 
 

• create the directory /output  if it did not already exist; 
• open the config file located at ./extractor.conf and set the appropriate parameters; 
• extract all features from each .bmp and .jpg image located in /samples ; 
• write templates for pores, ridges, edges and minutia for each image to /output ; and 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 8 of 25 

• write quality files for pore and ridge contours to /output . 
 
Short 
flag Long flag Token syntax Action 
-p N/A -p Extracts pores and writes them to a 

template for each image 
-r N/A -r Extracts minutia-constrained ridge 

contour points and writes them to a 
template for each image 

-m N/A -m Extracts minutia and writes them to a 
template for each image 

-e N/A -e Extracts edgeoscopic features and 
writes them to a template for each 
image 

-a N/A -a Extracts all features and writes them 
to templates for each image 

Table 3: Extractor command line options 

Configuration Parameters 
Each feature extraction process has a set of associated configuration parameters.  Where possible, these 
parameters are defined on a per-dpi basis as to allow resolution-independent extraction.  These dpi-
dependent parameters can be overridden with specific values by adding the appropriate keys to the 
configuration file. Appendix A: Feature Extraction Configuration lists the configuration keys and 
contains a sample configuration file.   

Supported Image Formats 
The feature extractor supports grayscale and RGB images in either bitmap or jpeg formats.  A directory of 
images may contain files of each format.  If an image cannot be opened for processing, the image is 
skipped and the extractor attempts to load the next image.  If you receive an error regarding heap space,* 
the input image is too large to be processed.  To resolve this, increase the heap size by including the 
-Xmx<max_heap_size>  argument.  For example, the argument line  
 

java -Xmx256m -jar nij-extractor.jar [args]   
 
would increase the max heap size to 256MB.   

Supported Image Resolutions 
As all configuration parameters are set with respect to resolution in dpi, any image between 500dpi and 
4000dpi can be processed using the feature extractor.  However, all default configuration parameter 
values were set for maximum effectiveness with 2000 dpi images and some parameters did not scale up 
as precisely as expected in small-scale A3791 testing.  To alleviate potential problems with resolutions 
greater than 2000dpi, the block sizes need to be increased to prevent inaccuracies in sliding window 
contrast adjustment and estimation of low ridge flow orientation.  The Mexican hat variance parameter 
also needs to be altered as the current convolution operation results in an undesired increase in noise.   
With these changes the feature extraction process should be capable of producing templates fit for 
matching.  

Processing Dependencies 
The extraction process for several of the feature types require data produced during other extraction 
processes (e.g. to extract edgeoscopic features, the ridges must first be extracted).  In these cases, if the 
verbose option is selected in the configuration file you may see these processing steps occur, but a 

                                                      
* Such an error generally appears as the exception: 
java.lang.OutOfMemoryError: Java heap space . 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 9 of 25 

template for the extraneous feature type(s) will not be saved.  Likewise, diagnostic images (if permitted by 
the configuration file) may be saved for the additional processing steps as they were necessary to extract 
the desired features.   
 
 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 10 of 25 

4 Performance Evaluator 
 

 
The performance evaluator may be used to evaluate the matching accuracy. By default, the NBIS Bozorth 
application is used to perform the template comparisons, but any external executable that accepts the 
same inputs and command line syntax as Bozorth and provides output in the same format may be 
swapped in. The process flow is as follows:  
 

1. From a directory of templates, an experiment is designed and a list of genuine and impostor 
comparisons is created. 

2. An external matcher application executable produces a raw score for each comparison in the list. 
3. The raw scores are analyzed and match rate histograms are created. 

 
The main requirement for correct operation is that the template files are named according to a specific 
convention and contain data appropriate for the external matcher executable that is employed. 
 
Performance Evaluator application 
Executable nij-evaluator.jar 
Dependencies nij-meta.jar 

ibg-mig.jar 
commons-logging.jar 
bailey.jar 
Jama-1.0.2.jar 

External Dependencies bozorth3  exectuable* 
Table 4: Performance Evaluator - key application information 

Application Processing 
The performance evaluator first iterates through the template directory and parses individual file metadata 
according to the naming convention under which the files in the sample datasets are named. Each file 
must be named 
 

01234-56789-RI-1-2000-tag.ext 
 
where 
 

• 01234 is the subject ID (and must be a nonnegative integer with or without leading zeros); 
• 56789 is the visit ID (and must be a nonnegative integer with or without leading zeros); 
• RI  is the finger position and must be one of RI , RM, LI , or LM; 
• 1 is the visit capture number, which must be a nonnegative integer and should not have leading 

zeros; 
• 2000  is the image resolution and must be a nonnegative integer and should not have leading 

zeros;  
• tag  is any string; and 
• ext  (the filename extension) is any string. 

 
The resolution, tag, and extension are not used for experiment design. 
 

                                                      
* Any executable may be swapped in for bozorth3, provided it accepts the same command line syntax as 
bozorth and creates the raw score file in the same output format. For more information, see the User’s 
Guide to NBIS, distributed with NBIS.  



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 11 of 25 

By default, an experiment is designed to perform all possible genuine comparisons and a roughly equal 
number of impostor comparisons. The list of comparisons is written to a text file in the user’s default 
temporary directory as alternating probe and gallery template filepaths. An example is in Figure 1.  
 
  
       /temps/01121-00019-RI-1-2000-A.xyt 
 /temps/01121-00128-RI-1-2000-A.xyt 
 /temps/00345-00007-RI-1-2000-A.xyt 
 /temps/73911-00011-RI-2-2000-A.xyt 
 … 
 

Figure 1: Mates list file excerpt 
 
 
In the mates list file, the first two lines define the probe and gallery templates for the first comparison, the 
next two lines define the probe and gallery templates for the next comparison, and so on. 
 
The mates list is provided as input to the matcher executable, which performs the comparisons and writes 
raw scores to a text file in the format displayed in Figure 2. 
 
 
 45 /temps/01121-00019-RI-1-2000-A.xyt /temps/01121 -00128-RI-1-2000-A.xyt 
 6 /temps/00345-00007-RI-1-2000-A.xyt /temps/73911- 00011-RI-2-2000-A.xyt 
 … 
 

Figure 2: Raw scores file excerpt 
 
Each line of the raw scores file describes one comparison as a score, probe template pathname, and 
gallery template pathname (in that order), delimited by single spaces. 
 
The raw scores file is then processed and a comma-separated values text file is created that describes 
each comparison on one line, and each line contains delimited metadata for both templates and the 
score. The tokens on each line of a processed score file are described in Table 5. 
 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 12 of 25 

 
Column 

Index Column Header Description 

0 p_filename Probe template filename 

1 p_subject_id Probe subject ID 

2 p_visit_id Probe visit ID 

3 p_position Probe position 

4 p_capture Probe visit capture number 

5 p_dpi Probe resolution 

6 p_tag Probe tag 

7 p_ext Probe filename extension 

8 g_filename Gallery template filename 

9 g_subject_id Gallery subject ID 

10 g_visit_id Gallery visit ID 

11 g_position Gallery position 

12 g_capture Gallery visit capture number 

13 g_dpi Gallery resolution 

14 g_tag Gallery tag 

15 g_ext Gallery filename extension 

16 is_genuine 1 if the comparison is genuine, 0 otherwise 

17 is_same_subject_impostor 
1 if the probe and gallery templates are from the same 
subject but different positions, 0 otherwise 

18 is_impostor 
1 if the comparison is an impostor comparison, 0 
otherwise 

19 score 
The comparison score (may be an integer or floating 
point value) 

Table 5: Processed score file columns 
 
The content of the processed score file is then parsed to analyze the match rates. Histograms of the 
impostor and genuine scores are created with score bin parameters defined as follows: 
 
 

• If the number of bins is not specified, the default (100) is used. Otherwise, the specified number 
of bins is used. 

• If the bin parameters (minimum of all bins and the bin size) are not specified, the minimum is the 
minimum score and the bin size is the score range (maximum score minus minimum score) 
divided by the number of bins. Otherwise the specified bin parameters are used. 

 
Those score distributions are used to compute the false match rate and false non-match rate histograms. 
The histograms are written as comma-separated values to the match rate analysis output file in the format 
of Figure 3. 
 
 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 13 of 25 

 
Bin gen_count gen_freq imp_count imp_freq FM_count FMR FNM_count FNMR 
Lesser 0 0 0 0 0 0 0 0 

0 91 0.0075 133 0.00872 133 0.009 12129 1 
4.06 1260 0.10388 1917 0.12563 2050 0.134 12038 0.992 
8.12 1967 0.16216 3134 0.20539 5184 0.34 10778 0.889 

12.18 1692 0.13949 2433 0.15945 7617 0.499 8811 0.726 
16.24 1147 0.09456 1477 0.0968 9094 0.596 7119 0.587 

20.3 767 0.06323 890 0.05833 9984 0.654 5972 0.492 
… 
… 
… 

803.88 0 0 0 0 15258 1 0 0 
807.94 0 0 0 0 15258 1 0 0 

Greater 1 8.2E-05 1 6.6E-05 1 7E-05 1 8E-05 
Figure 3: Match rate analysis output file 
 
The match rate analysis file also contains two columns (not shown) that are the same as the FMR and 
FNMR columns but where every zero value has been replaced by 1e-5, to facilitate plotting the DET 
curves on log charts where zero values are invalid. 

Execution Syntax 
The command syntax is as follows: 
 

java -jar nij-evaluator.jar [OPTIONS] pathname1 pathname2 pathname3 

 
where: 
 

• pathname1 is the path to the template directory 
• pathname2 is the path to the matcher executable (e.g. bozorth3.exe) 
• pathname3 is the destination for the match rate analysis output file 
 

and [OPTIONS]  are any options listed in Table 6. Use of command line options is described in more detail 
in Appendix C: Standardized Command Line Syntax. 
 
For example, the command 
 

java -jar nij-evaluator.jar -vp 4 --mates-list /tmp /mateslist.txt  
/path/to/my_template_dir /usr/bin/bozorth3 /tmp/mat ch_rates.csv 

 
entered on a single line would perform the following: 
 

• design an experiment using at most 4 finger positions from the templates in the directory 
/path/to/my_template_dir ; 

• send verbose messages to stdout  during experiment design; 
• write the list of comparisons to /tmp/mateslist.txt ; 
• compare templates using /usr/bin/bozorth3 ; and  
• write the match rate analysis to /tmp/match_rates.csv . 

 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 14 of 25 

Short 
flag Long flag Token syntax Action 
-A  --a-errors --a-errors filepath Writes errors encountered during 

match rate analysis stage to the 
specified file* 

-b  --bin-params --bin-params min size Sets the score bin parameters used 
during match rate analysis. The 
minimum of all bins is set to min and 
the bin size is set to size. Tokens 
must be in format as required by the 
Float.parseFloat  method in the 
Java™ standard library. 

-e  --boz-errors --boz-errors filepath Writes matcher executable’s error 
stream to the specified file* 

-c  --cross-visit N/A Limits genuine comparison list to 
cross-visit comparisons only. 

-h  --help N/A Displays help message and exits 
-i  --imp-comps --imp-comps num Sets the target number of impostor 

comparisons per subject 
-M  --mates-list --mates-list filepath Writes the list of comparisons to the 

specified file* 
-n  --num-bins --num-bins num Sets the number of score bins used 

for match rate analysis 
(default is 100) 

-s  --num-subjects --num-subjects num Limits the number of subjects used 
for the experiment to the specified 
value. If the number is less than the 
population size of the template 
directory, the subjects used for the 
experiment are chosen at random. 

-f  --positions --positions num Limits the number of finger positions 
to be used in constructing the 
comparison list. The default is 1. 

-P  --proc-errors --proc-errors filepath Writes errors encountered during the 
processing of raw scores to the 
specified file* 

-r  --raw-scores --raw-scores filepath Writes the raw scores to the 
specified file* 

-v  --verbose N/A Send verbose messages about 
experiment design to stdout 

-V  --vverbose N/A Send debug messages about 
experiment design to stdout 

-p  --processed-scores --processed-scores filepath Writes the processed scores to the 
specified file* 

Table 6: Evaluator command line options 
 

Known Bugs 
The experiment designer has a few known bugs that result in the number of impostor comparisons not 
being exactly equal to the number of subjects multiplied by the target number of impostor comparisons 
per subject. When the comparisons are generated, any invalid comparisons (such as a same-subject, 
different position comparison) are caught and thrown out, and as a result, the final impostor comparison 
list is often a few comparisons short of the target total. 
 

                                                      
* If not specified, output is written to a file in the user’s default temporary directory. This file’s filename is 
displayed in the console output. 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 15 of 25 

5 IQM Analyzer 
 

 
The IQM application from the MITRE Corporation* was used in Level 3 matching performance evaluation 
to analyze image quality, and a Java™ interface was developed in order to facilitate the evaluation. The 
interface has only been tested with the Windows version of the IQM application, specifically with the 
executable iqm72cygwin.exe.  
 
The IQM application requires a preferences text file and an auxiliary data text file (“auxdata file”), in 
addition to the image files themselves, for operation. The documentation distributed with the application 
contains more information on required input files. 
 
IQM Analyzer application 
Executable iqm-analyzer.jar 
Dependencies ibg-mig.jar 

commons-logging.jar 
External Dependencies bozorth3  exectuable 
Table 7: IQM Analyzer - key application information 

Application Processing 
The process flow is as follows: 
 

1. From a directory of images, an auxdata file is created. 
2. The preferences file is generated from parameters hard-coded into a class. 
3. The native iqm72cygwin.exe process is executed, with the verbose output setting, from the JVM. 
4. The output file is parsed, and a comma-separated values file is created where each line contains 

the image filepath and several quality measures. (This step is optional.) 
 
The preferences and auxdata file generation process are designed only for 8-bit grayscale images in the 
formats accepted by IQM. See the IQM documentation for details on the IQM application process flow 
and valid input image formats. 

Execution Syntax 
The command syntax is as follows: 
 

java -jar iqm-analyzer.jar [OPTIONS] pathname1 pathname2 

 
where: 
 

• pathname1 is the path to the IQM executable (e.g. iqm72cygwin.exe) 
• pathname2 is the path to the image directory 
 

and [OPTIONS]  are any options listed in Table 8, Use of command line options is described in more detail 
in Appendix C: Standardized Command Line Syntax. 
 
For example, the command 
 

java -jar iqm-analyzer.jar -x bmp --parse --output C:\tmp\iqm_analysis  
C:\iqm\execs\iqm72cygwin.exe C:\path\to\my_image_di r 

 
entered on a single line would perform the following: 

                                                      
* www.mitre.org  



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 16 of 25 

 
• create the directory C:\tmp\iqm_analysis if it does not already exist 
• create an auxdata file listing all files in C:\path\to\my_image_dir  that match *.bmp , along with 

the required auxdata parameters; 
• create a default preferences file; 
• execute C:\iqm\execs\iqm72cygwin.exe ; 
• parse the IQM_OUTPUT file created by IQM and write the quality data to the file 

C:\tmp\iqm_analysis\iqm_output_records.csv .  
 
Short 
flag Long flag Token syntax Action 
-c --echo N/A Echoes console output from the IQM 

application to stdout  
-x --ext --ext extension Restricts input image files to files 

with the filename extension matching 
extension 

-h --help N/A Display usage message and exit 
-o --output --output pathname Specifies the directory in which to 

write all output files. The directory 
will be created if it does not exist. If 
this option is not specified, then a 
directory is created in the user’s 
default temporary directory. 

-p --parse N/A Parses the output file created by the 
IQM application and writes quality 
measures to a comma-separated 
values file named 
iqm_output_records.csv  in the 
output directory 

-V --vparse N/A Causes verbose messages about 
the output parsing to be sent to 
stdout  

Table 8: IQM Analyzer command line options 
 

Notes about IQM Preferences 
The preferences file that is generated by iqm-analyzer.jar  is not identical to the DefaultPrefs  file 
distributed by MITRE with the IQM application. The differences are noted in the source code for the class 
ibg.image.iqm.IQMPreferences . 
 
 



Appendix A: Feature Extraction Configuration 
 

 
Image Preprocessor configuration keys 
Configuration Key Description Default  
ip_verbose Print image preprocessing progress data to the console True 
ip_diagnostics Save image preprocessing diagnostics to the output 

directory 
False 

ip_minimumdiagnostics Save only the most important image preprocessing 
diagnostics 

False 

ip_macroblocksize Size of the blocks (in pixels) over which the ridge flow 
orientation is determined; overrides 
ip_macroblocksizeperdpi  

30 

ip_macroblocksizeperdpi Size of the blocks (in pixels) over which the ridge flow 
orientation is determined (per DPI) 

0.015 

ip_gaussianvariance Variance of the Gaussian kernel used to blur the image; 
overrides ip_gaussianvarianceperdpi  

2.0 

ip_gaussianvarianceperdpi Variance of the Gaussian kernel used to blur the image 
(per DPI) 

0.001 

ip_uppercontrastthresh The assumed ratio of undetermined valley pixels to total 
pixels in the image;  this ratio determines the threshold at 
which pixels with a greater intensity are set to 255 

0.85 

ip_lowercontrastthresh The assumed ratio of definitive ridge pixels to total pixels 
in the image;  this ratio determines the threshold at which 
pixels with a lower intensity are set to 0 

0.15 

  
Pore Extractor configuration keys 
Configuration Key Description Default 
pe_verbose  Print pore extraction progress data to the console True 
pe_diagnostics  Save pore extraction diagnostics to the output directory False 
pe_minimumdiagnostics Save only the most important pore extraction diagnostics False 
pe_minimumblobsize Lower size bound on pore blobs to be detected; overrides 

pe_minimumblobsizeperdpi  
0 

pe_minimumblobsizeperdpi Lower size bound on pore blobs to be detected (per DPI) 0.0 
pe_maximumblobsize  Upper size bound on pore blobs to be detected; overrides 

pe_maximumblobsizeperdpi  
90 

pe_maximumblobsizeperdpi Upper size bound on pore blobs to be detected (per DPI) 0.045 
pe_mexhatvariance  Variance of the 2D Mexican hat wavelet kernel; overrides 

pe_mexhatvarianceperdpi  
2.6 

pe_mexhatvarianceperdpi Variance of the 2D Mexican hat wavelet kernel (per DPI) 0.0013 
pe_mexhatthreshold  Intensity threshold at which the Mexican hat processed 

image is thresholded 
192 

pe_border Size of the border which is applied to the image to remove 
invalid data introduced by the various processing steps; 
overrides pe_borderperdpi  

10 

pe_borderperdpi Size of the border which is applied to the image to remove 
invalid data introduced by the various processing steps 
(per DPI) 

0.005 

 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 18 of 25 

 
Ridge extraction configuration keys 
Configuration Key Description Default 
pe_verbose  Print ridge extraction progress data to the console True 
pe_diagnostics  Save ridge extraction diagnostics to the output directory False 
pe_minimumdiagnostics Save only the most important ridge extraction diagnostics False 
re_microblocksize  Size of the blocks (in pixels) over which the ridge contour 

orientation is determined; overrides 
ip_microblocksizeperdpi  

4 

re_microblocksizeperdpi  Size of the blocks (in pixels) over which the ridge contour 
orientation is determined (per DPI) 

0.002 

re_minimumblobfillsize  Lower size bound on blobs to be filled; overrides 
pe_minimumblobfillsizeperdpi  

0 

re_minimumblobfillsizeperdpi Lower size bound on blobs to be filled (per DPI) 0.0 
re_maximumblobfillsize  Upper size bound on blobs to be filled; overrides 

pe_maximumblobfillsizeperdpi  
250 

re_maximumblobfillsizeperdpi Upper size bound on blobs to be filled (per DPI) 0.125 
re_threshold  Intensity threshold at which the preprocessed image is 

thresholded prior to blob detection  
127 

re_border  Size of the border which is applied to the image to remove 
invalid data introduced by the various processing steps; 
overrides re_borderperdpi  

12 

re_borderperdpi  Size of the border which is applied to the image to remove 
invalid data introduced by the various processing steps 
(per DPI) 

0.006 

re_pixelspacing  Controls the interval at which pixels are kept along each 
ridge contour; overrides re_pixelspacingperdpi  

8 

re_pixelspacingperdpi  Controls the interval at which pixels are kept along each 
ridge contour (per DPI) 

0.004 

re_suppressionradius  Radius around minutia; ridge contour pixels outside of this 
radius are removed; overrides 
re_suppressionradiusperdpi  

30 

re_suppressionradiusperdpi Radius around minutia; ridge contour pixels outside of this 
radius are removed (per DPI) 

0.015 

 
Edgeoscopic feature extraction configuration keys 
Configuration Key Description Default 
ee_verbose Print ridge extraction progress data to the console True 
ee_diagnostics  Save ridge extraction diagnostics to the output directory False 
ee_minimumdiagnostics  Save only the most important ridge extraction diagnostics False 
ee_pixelspread  Distance over which the orientation difference is 

calculated; overrides ee_pixelspreadperdpi  
6 

ee_pixelspreadperdpi Distance over which the orientation difference is 
calculated (per DPI) 

0.003 

ee_numberofpoints  Quantity of edgeoscopic points to extract 200 
ee_proximitythreshold  Maximum distance two edgeoscopic points may fall within 

each other; overrides 
ee_proximitythresholdperdpi  

9 

ee_proximitythresholdperdpi  Maximum distance two edgeoscopic points may fall within 
each other (per DPI) 

0.0045 

 
 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 19 of 25 

Sample Config File (extractor.conf ) 
 
#------------------------------------------ 
#Image preprocessing parameters 
#------------------------------------------ 
ip_verbose = true 
ip_diagnostics = true 
ip_minimumdiagnostics = false 
 
#ip_macroblocksize = 30 
ip_macroblocksizeperdpi = 0.015 
 
#ip_gaussianvariance = 2.0 
ip_gaussianvarianceperdpi = 0.001 
 
ip_uppercontrastthresh = 0.85 
ip_lowercontrastthresh = 0.15 
 
 
#------------------------------------------ 
#Pore extraction parameters 
#------------------------------------------ 
pe_verbose = true 
pe_diagnostics = true 
pe_minimumdiagnostics = false 
 
#pe_minimumblobsize = 0 
pe_minimumblobsizeperdpi = 0.0 
 
#pe_maximumblobsize = 90 
pe_maximumblobsizeperdpi = 0.045 
 
#pe_mexhatvariance = 2.6 
pe_mexhatvarianceperdpi = 0.0013 
 
pe_mexhatthreshold = 192 
 
#pe_border = 10 
pe_borderperdpi = 0.005 
 
#------------------------------------------ 
#Ridge extraction parameters 
#------------------------------------------ 
re_verbose = true 
re_diagnostics = true 
re_minimumdiagnostics = false 
 
#re_microblocksize = 4 
re_microblocksizeperdpi = 0.002 
 
#re_minimumblobfillsize = 0 
re_minimumblobfillsizeperdpi = 0.0 
 
#re_maximumblobfillsize = 250 
re_maximumblobfillsizeperdpi = 0.125 
 
re_threshold = 127 
 
#re_border = 12 
re_borderperdpi = 0.006 
 
#re_pixelspacing = 8 
re_pixelspacingperdpi = 0.004 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 20 of 25 

 
#re_suppressionradius = 30 
re_suppressionradiusperdpi = 0.015 
 
#------------------------------------------ 
#Edgeoscopic extraction parameters 
#------------------------------------------ 
ee_verbose = true 
ee_diagnostics = true 
ee_minimumdiagnostics = false 
 
#ee_pixelspread = 6 
ee_pixelspreadperdpi = 0.003 
 
ee_numberofpoints = 200 
 
#ee_proximitythreshold = 9 
ee_proximitythresholdperdpi = 0.0045 

 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 21 of 25 

Appendix B: Software Libraries 
 

 
In the development of Level 3 extraction and matching tools, several more general software libraries were 
produced in order to perform tasks not directly related to Level 3 extraction and matching. Such libraries 
are included in the software deliverable, and descriptions are below. Any dependencies are also listed.  
 
The only external biometric software utilized for the project is the National Institute of Science and 
Technology Biometric Image Software (NBIS) collection, which is also described below. Other non-
biometric external software libraries are employed. All software libraries and applications are either  

(a) in the public domain; 
(b) distributed under an open source license; or 
(c) distributed for non-commercial use. 

Relevant license information for the latter is included in the descriptions below, and where applicable, the 
software packages themselves contain copies of the licenses. 

IBG MIG Libraries 
The IBG Math, Image & General Libraries (MIG) contain classes dedicated to various mathematical, 
image processing, or other general operations. The full API documentation for these libraries is included 
in API Documentation appendix. MIG is contributed to the public domain along with the Level 3 software 
deliverable. Table 9 contains descriptions of the constituent packages. 
 
Package Description Dependencies 
ibg.math Classes that support common algebraic, geometric, and 

general mathematical operations. The core of this 
package is its support for floating-point vectors 
implemented as matrices with a row or column dimension 
of one, and thus compatible with matrix operations as 
supported by the JAMA package (see note on 
dependencies). 
 
Although the general ColumnVector  and RowVector  
classes are sufficient to perform linear algebra operations 
for any vector, most users of this package will probably 
find the Point2D  or Point3D  extensions more 
convenient.  
 
Other classes are provided to facilitate file I/O related to 
sets or arrays of vectors, and others are dedicated to 
facilitating printing matrices to standard output. 

ibg.util 
JAMA 
 

ibg.math.stat Classes that facilitate common statistics operations, such 
as computation of the mean, median, quartile values, 
variance, etc. Also includes support for histogram 
creation. 

(none) 

ibg.math.graph Classes that facilitate common vertex-edge graph 
operations. 

Structures 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 22 of 25 

Package Description Dependencies 
ibg.math.plot Classes that facilitate simple plotting in an arbitrarily sized 

2D coordinate plane. All viewable components of plotted 
data are objects that can be made visible or invisible. This 
includes data sets as well as the administrative 
components of a plot (the axes, grid, labels, and 
background area). Aesthetic settings such as color and 
point appearance can be automatically generated or 
manually configured. 

ibg.math 

ibg.math.nonrigid 
ibg.math.reg 
 

Classes that implement the iterative closest point 
algorithm with non-rigid transformations as described 
in “A new point matching algorithm for non-rigid 
registration” by Anand Rangarajan and Haili Chui. The 
source code for this package has been adapted from the 
Matlab® source code released by the authors under the 
GNU GPLv2.  

ibg.util 
ibg.math 

ibg.image 
ibg.image.io 
ibg.image.conv 
ibg.image.filter 
 
 
 

Classes that facilitate common image processing 
operations and support the more narrowly focused 
subpackages. 

(none) 

ibg.util Classes that support a variety of operations, including file 
I/O, external binary execution, and command line parsing. 
This package forms a base library on which the other 
ibg.packagename packages rely. 

(none) 

Table 9: IBG MIG Packages 

JAMA 
JAMA is a JAva MAtrices package developed by NIST and The MathWorks (www.mathworks.com). From 
the JAMA web page:  
 

JAMA is a basic linear algebra package for Java. It provides user-level 
classes for constructing and manipulating real, dense matrices.  It is 
meant to provide sufficient functionality for routine problems, packaged 
in a way that is natural and understandable to non-experts. 

 
The Matrix  class in the JAMA package serves as the superclass for many classes in ibg.math. 
 
The JAMA package has been released to the public domain. 

JLAPACK 
From the f2j  project site: “The goal of the Fortran-to-Java project is to provide Java Application 
Programming Interfaces (APIs) to numerical libraries originally written in Fortran (particularly BLAS and 
LAPACK).”  
 
JLAPACK is the collection Java packages providing support for various linear algebra operations. The 
classes contained in the packages have been automatically generated by the f2j  application. 
 
The license under which JLAPACK is distributed is unclear. The f2j  source code is distributed with the 
GNU General Public License, version 2, with the addition of the BSD advertising clause. However, the 
project web site states that the project uses a BSD License, but does not specify which BSD License or if 
merely a BSD-style license is implied. In addition, the JLAPACK binary downloads are transmitted with no 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 23 of 25 

license attached, and it is not clear that binaries compiled from source produced from the f2j  Fortran 
translator would fall under the same license. 

Apache Commons Logging 
Apache Commons Logging is a logging interface for Java. From the Apache Commons Logging web site: 
 

The Logging package is an ultra-thin bridge between different logging 
implementations. A library that uses the commons-logging API can be 
used with any logging implementation at runtime. Commons-logging 
comes with support for a number of popular logging implementations, 
and writing adapters for others is a reasonably simple task. 

 
The binaries are distributed under the Apache License, version 2.0. A copy of the license has been 
included with the software.  

NIST Biometric Image Software 
NIST Biometric Image Software (NBIS) is a collection of fingerprint software tools developedy by NIST for 
the Federal Bureau of Investigation and Department of Homeland Security. 
 
The current implementation of Level 3 feature matching involves the utilization and manipulation of 
Level 2 (minutia) extraction and matching results. NBIS is used for all Level 2-related image and data 
processing. Although more refined commercial fingerprint software for processing Level 2 features exists, 
NBIS, the entirety of which is in the public domain, was chosen to ensure that users of the software 
developed for Level 3 extraction and matching may obtain its dependencies freely and with minimal 
restrictions.  
 
From the NBIS User’s Guide (reformatted): 

The NBIS software is organized in two categories: nonexport controlled and 
export controlled. The non-export controlled NBIS software is organized into five 
major packages:  

1. PCASYS is a neural network based fingerprint pattern  classification 
system;  

2. MINDTCT is a fingerprint minutiae detector;  
3. NFIQ is a neural network based fingerprint image quality algorithm,  
4. AN2K is a reference implementation of the ANSI/NISTITL 1-2000 "Data 

Format for the Interchange of Fingerprint, Facial, Scar Mark & Tattoo 
(SMT) Information" standard; and  

5. IMGTOOLS is a collection of image utilities, including encoders and 
decoders for Baseline and Lossless JPEG and the FBI’s WSQ 
specification.  

The export controlled NBIS software is organized into two major packages:  

6. NFSEG is a fingerprint segmentation system useful for segmenting four-
finger plain impressions,  

7. BOZORTH3 is a minutiae-based fingerprint matching system. 

The Level 3 software developed for this project depends on both the non-export- and export-controlled 
packages. All NBIS packages have been released to the public domain. 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 24 of 25 

Structures 
The Structures package contains classes implementing various data structures. The software was 
originally developed for a textbook, Data Structures in Java, for the Principled Programmer, written by 
Duane A. Bailey and published by McGraw-Hill Professional, 2002. The text of the book and the 
associated software have been released to the public for educational use. Duane A. Bailey is a professor 
of computer science at Williams College in Williamstown, MA. The text of the book and the software are 
available on Professor Bailey’s home page.* The license conditions under which the software is released 
are unclear, but the author’s intent is presumed to be to restrict use to educational and non-commercial 
purposes. 

                                                      
* www.cs.williams.edu/~bailey/JavaStructures 



 

 
Quantitative Research on Friction Ridge Patterns  L3TK User’s Guide 
International Biometric Group  Page 25 of 25 

Appendix C: Standardized Command Line Syntax 
 

 
The ibg.util.CommandLineParser  class is employed in some applications to perform parsing of the 
command line. The processing performed by the relevant class methods is described below. 
 
The process  method is called to parse the command line (which is passed as the args[]  parameter of 
the main  method). Parsing modifies the contents of each individual CommandLineOption  object to 
reflect the command line arguments. If an option's keyword (or key character) was present in the 
command line argument, that CommandLineOption  object is marked as flagged. If that option was 
defined to require arguments, then the associated arguments are stored and may be retrieved with the 
getArguments  instance method in the CommandLineOption  class.  
 
After all options and their individually required arguments have been processed, there may be arguments 
left over that are not associated with any specific option. These are known as "leftovers", and they are 
stored in a java.util.List . For some applications, it may be redundant to require an option keyword 
and an argument for the option. For example, an application may require only a single argument, always 
require it, and not have any other command line options defined. In those cases, the 
CommandLineParser  should be constructed with the numRequiredLeftovers  parameter equal to 
one.  
 
To review, the parser does the following:  
 

1. consumes all long flags and associated arguments 
2. consumes all short flags and associated arguments 
3. consumes all leftover arguments 

 
Short (single character) and long (string literal) flags are processed differently. The short flags should be 
entered first on the command line and be all in a group, with only a single hyphen at the beginning. For 
example, the command line  
 
       java MyApp -xvf --long-flag arg1 arg2 arg3 a rg4 
  
contains the short flags x , v , and f .  
 
Long flags can go anywhere and are processed first. Arguments associated with a particular long flag 
must immediately postcede the flag. In the example above, if --long-flag  is defined to require a single 
argument, then arg1  is the argument that will be associated with it.  
 
After the long flags are processed, the short flags are processed. If a short flag requires an argument, the 
first argument on the line (that is not another flag or an argument that was consumed by a long flag) is 
associated with it. For multiple short flags, the first flag will eat the first unassociated argument (or 
arguments, depending on how many it requires), the second flag will eat the next, and so on. In the 
example above, if --long-flag  is defined to require a single argument and -x  and -f  are each defined 
to require a single argument (while -v  takes no arguments), then --long-flag  will consume arg1 , -x  
will consume arg2 , and -f  will consume arg3 .  
 
Once the short and long flags and their associated arguments have been processed, the leftover 
arguments are stored in the leftovers list. In the example above, where --long-flag , -x  and -f  each 
consume a single argument, arg4  is the argument leftover after all options have been processed. 
 


